Ads

Numbers and Sequences Ex 2.9-10th Std Maths-Book Back Question And Answer

Numbers and Sequences Ex 2.9-10th Std Maths-Book Back Question And Answer

Question 1.

Find the sum of the following series

(i) 1 + 2 + 3 + …….. + 60

(ii) 3 + 6 + 9 + …….. +96

(iii) 51 + 52 + 53 + …….. + 92

(iv) 1 + 4 + 9 + 16 + …….. + 225

(v) 62 + 72 + 82 + …….. + 212

(vi) 103 + 113 + 123 + …….. + 203

(vii) 1 + 3 + 5 + …… + 71

Solution:

(i) 1 + 2 + 3 + …….. + 60 = 60×612

[Using n(n+1)2 formula]

= 1830

(ii) 3 + 6 + 9 + …….. + 96 = 3(1 + 2 + 3 + ……… + 32)

= 3×32×332

= 1584

(iii) 51 + 52 + 53 + …….. + 92 = (1 + 2 + 3 + ……. + 92) – (1 + 2 + 3 + …… + 50)

= 4278 – 1275

= 3003

(iv) 1 + 4 + 9 + 16 + …….. + 225 = 12 + 22 + 32 + 42 + ………… + 152

15×16×316

[using n(n+1)(2n+1)6] formula

= 1240

(v) 62 + 72 + 82 + …….. + 212 = 1 + 22 + 32 + 42 + ………… + 212 – (1 + 22 + ………… + 52)

= 21×22×436 – 5×6×116

= 3311 – 55

= 3256

(vi) 103 = 113 + 123 + …….. + 203 = 13 + 23+ 33 + ………… + 203 – (13 + 23 + 33 + …………. + 93)

[Using (n(n+1)2)2 formula]

= 2102 – 452 = 44100 – 2025

= 42075

(vii) 1 + 3 + 5+ … + 71

Here a = 1; d = 3 – 1 = 2; l = 71

Question 2.

If 1 + 2 + 3 + …. + k = 325 , then find 13 + 23 + 33 + …………. + k3

Answer

1 + 2 + 3 + …. + k = 325

k(k+1)2 = 325 ……(1)

= 3252 (From 1)

= 105625

Question 3.

If 13 + 23 + 33 + ………… + K3 = 44100 then find 1 + 2 + 3 + ……. + k

Answer

13 + 23 + 33 + ………….. + k3 = 44100

k(k+1)2 = 44100−−−−−√ = 210

1 + 2 + 3 + …… + k = k(k+1)2

= 210

Question 4.

How many terms of the series 13 + 23 + 33 + …………… should be taken to get the sum 14400?

Answer

13 + 23 + 33 + ……. + n3 = 14400

n(n+1)2 = 14400−−−−−√

n(n+1)2 = 120 ⇒ n2 + n = 240

n2 + n – 240 = 0

(n + 16) (n – 15) = 0

(n + 16) = 0 or (n – 15) = 0

n = -16 or n = 15 (Negative will be omitted)

∴ The number of terms taken is 15

Question 5.

The sum of the squares of the first n natural numbers is 285, while the sum of their cubes is 2025. Find the value of n.

Answer

12 + 22 + 32 + …. + n2 = 285

Question 6.

Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm, …, 24 cm. How much area can be decorated with these colour papers?

Answer

Area of 15 square colour papers

= 102 + 112 + 122 + …. + 242

= (12 + 22 + 32 + …. + 242) – (12 + 22 + 92)

= 24×25×496−9×10×196

= 4 × 25 × 49 – 3 × 5 × 19

= 4900 – 285

= 4615

Area can be decorated is 4615 cm2

Question 7.

Find the sum of the series (23 – 1)+(43 – 33) + (63 – 153) + …….. to

(i) n terms

(ii) 8 terms

Answer

Sum of the series = (23 – 1) + (43 – 33) + (63 – 153) + …. n terms

= 23 + 43 + 63 + …. n terms – (13 + 33 + 53 + …. n terms) …….(1)

23 + 43 + 63 + …. n = ∑(23 + 43 + 63 + ….(2n)3]

∑ 23 (13 + 23 + 33 + …. n3)

= 8 (n(n+1)2)2

= 2[n (n + 1)]2

13 + 33 + 53 + ……….(2n – 1)3 [sum of first 2n cubes – sum of first n even cubes]

Substituting (2) and (3) in (1)

Sum of the series = 2n2 (n + 1)2 – n2 (2n + 1)2 + 2n2(n + 1)2

= 4n2 (n + 1)2 – n2 (2n + 1)2

= n2 [(4(n + 1)2 – (2n + 1)2]

= n2 [4n2 + 4 + 8n – 4n2 – 1 – 4n]

= n2 [4n + 3]

= 4n3 + 3n2

(ii) when n = 8 = 4(8)3 + 3(8)2

= 4(512) + 3(64)

= 2240