Ads

Trigonometry Ex 6.1-10th Std Maths-Book Back Question And Answer

Trigonometry Ex 6.1-10th Std Maths-Book Back Question And Answer

Question 1.

Prove the following identities.

(i) cot θ + tan θ = sec θ cosec θ

(ii) tan4 θ + tan2 θ = sec4 θ – sec2 θ

Answer:

(i) L. H. S = cot θ + tan θ

= cosθsinθ+sinθcosθ

= cos2θ+sin2θsinθcosθ

[cos2 θ + sin2 θ = 1]

= 1sinθcosθ

= sec θ . cosec θ = R. H. S

∴ cot θ + tan θ = sec θ cosec θ

(ii) tan4 θ + tan2 θ = sec4 θ – sec2 θ

L.H.S = tan4 θ + tan2 θ

= tan2 θ (tan2 θ + 1)

= tan2 θ sec2 θ

R.H.S = sec4 θ – sec2 θ

= sec2 θ (sec2 θ – 1)

= sec2 θ tan2 θ

L.H.S = R.H.S

∴ tan4 θ + tan2 θ = sec4 θ – sec2 θ

Question 2.

Prove the following identities.

(i) 1−tan2θcot2θ−1 = tan2 θ

(ii) cosθ1+sinθ = sec θ – tan θ

Answer:

(i) 1−tan2θcot2θ−1 = tan2 θ

(ii) cosθ1+sinθ = sec θ – tan θ

Aliter:

L.H.S = cosθ1−sinθ

[conjugate (1 – sin θ)]

Question 3.

Prove the following identities.

Solution:

Question 4.

Prove the following identities.

(i) sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1

(ii) (sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2

Answer:

(i) sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1

L.H.S = sec6 θ

= (sec2 θ)3 = (1 + tan2 θ)3

= 1 + (tan2 θ)3 + 3 (1) (tan2 θ) (1 + tan2 θ) [(a + b)3 = a3 + b3 + 3 ab (a + b)]

= 1 + tan6 θ + 3 tan2 θ(1 + tan2 θ)

= 1 + tan6 θ + 3 tan2 θ (sec2 θ)

= 1 + tan6 θ + 3 tan2 θ sec2 θ

= tan6 θ + 3 tan2 θ sec2 θ + 1

L.H.S = R.H.S

(ii) (sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2

L.H.S = (sin θ + sec θ)2 + (cos θ + cosec θ)2]

= [sin2 θ + sec2 θ + 2 sin θ sec θ + cos2 θ + cosec2 θ + 2 cos θ cosec θ]

= (sin2 θ + cos2 θ) + (sec2 θ + cosec2 θ) + 2 (sin θ sec θ + cos θ cosec θ)

= 1 + sec2 θ + cosec2 θ + 2 sec θ cosec θ

= 1 + (sec θ + cosec θ)2

L.H.S = R.H.S

∴ (sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2

Question 5.

Prove the following identities.

(i) sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1

(ii) cotθ−cosθcotθ+cosθ=cscθ−1cscθ+1

Answer:

(i) L.H.S = sec4 θ (1 – sin4 θ) – 2 tan2 θ

L.H.S = R.H.S

∴ sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1

(ii) cotθ−cosθcotθ+cosθ=cscθ−1cscθ+1



Question 6.

Prove the following identities.

Answer:

Question 7.

(i) If sin θ + cos θ = 3–√, then prove that tan θ + cot θ = 1.

(ii) If 3–√ sin θ – cos θ = θ, then show that tan 3θ = 3tanθ−tan3θ1−3tan2θ

Answer:

sin θ + cos θ = 3–√ (squaring on both sides)

(sin θ + cos θ)2 = (3–√)2

sin2 θ + cos2 θ + 2 sin θ cos θ = 3

1 + 2 sin θ cos θ = 3

2 sin θ cos θ = 3 – 1

2 sin θ cos θ = 2

∴ sin θ cos θ = 1

L.H.S = tan θ + cot θ

L.H.S = R.H.S ⇒ tan θ + cot θ = 1

(ii) If 3–√ sin θ – cos θ = 0

To prove tan 3θ = 3tanθ−tan3θ1−3tan2θ

3–√ sin θ – cos θ = 0

3–√ sin θ = cos θ

sinθcosθ=13√

tan θ = tan 30°

θ = 30°

L.H.S = tan 3θ°

= tan3 (30°)

= tan 90°

= undefined (∝)

∴ tan 3θ = 3tanθ−tan3θ1−3tan2θ

Question 8.

(i) If cosαcosβ=m and cosαcosβ=n then prove that (m2 + n2) cos2 β = n2

(ii) If cot θ + tan θ = x and sec θ – sec θ – cos θ = y, then prove that (x2y)2/3 – (xy2)2/3 = 1

Answer:

(i) L.H.S = (m2 + n2) cos2 β

L.H.S = R.H.S ⇒ ∴ (m2 + n2) cos2 β = n2

(ii) Given cot θ + tan θ = x sec θ – cos θ = y

x = cot θ + tan θ

x = 1tanθ + tan θ

= 1+tan2θtanθ = sec2θtanθ

y = sec θ – cos θ

= 1cosθ−cosθ=1−cos2θcosθ

y = sin2θcosθ

Question 9.

(i) If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q (p2 – 1) = 2 p

(ii) If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4

Answer:

(i) p = sin θ + cos θ

p2 = (sin θ + cos θ)2

= sin2 θ + cos2 θ + 2 sin θ cos θ = 1 + 2 sin θ cos θ

q = sec θ + cosec θ

= 1cosθ+1sinθ=sinθ+cosθsinθcosθ

L.H.S = q(p2 – 1)

(ii) sin θ (1 + sin2 θ) = cos2 θ

sin θ (1 + 1 – cos2 θ) = cos2 θ

sin θ (2 – cos2 θ) = cos2 θ

Squaring on both sides,

sin2 θ (2 – cos2 θ)2 = cos4 θ

(1 – cos2 θ) (4 + cos4 θ – 4 cos2 θ) = cos4 θ

4 cos4 θ – 4 cos2 θ – cos6 θ + 4 cos4 θ = cos4 θ

4 + 5 cos4 θ – 8 cos2 θ – cos6 θ = cos4 θ

– cos6 θ + 5 cos4 θ – cos4 θ – 8 cos2 θ = -4

– cos6 θ + 4 cos4 θ – 8 cos2 θ = -4

cos6 θ – 4 cos4 θ + 8 cos2 θ = 4

Hence it is proved

Question 10.

If cosθ1+sinθ = 1a, then prove that a2−1a2+1 = sin θ

Answer: