எண்களும் தொடர்வரிசைகளும் Unit Exercise 2-10th Std Maths-Book Back Question And Answer
கேள்வி 1.
எல்லா மிகை முழுக்கள் n-க்கும் n2 – n ஆனது 2-ஆல் வகுபடும் என நிறுவுக.
தீர்வு:
தரவு:- n2 – n
தீர்வு வகை (i): n ஒரு இரட்டை எண் என்க. எனவே n = 2k என்க
n2 – n = (2k)2 -2k
= 4k2 – 2k
= 2(2k2 – k)
2 ஆல் வகுபடும்
வகை (ii): n ஒரு ஒற்றை எண் என்க.
எனவே n = 2k+1
n2 – n = (2k+1)2 – (2k+1)
= 4k2 +4k+1 -2k-1
= 4k2 + 2k
= 2(2k2 + k)
= 2 ஆல் வகுபடும்
n2 – 1 என்பது 2 ஆல் வகுபடும்.
கேள்வி 2.
ஒரு பால்காரரிடம் 175 லிட்டர் பசும் பாலும் 105 லிட்டர் எருமைப்பாலும் உள்ளது இவற்றை அவர் சம கொள்ளளவுக் கொண்ட இருவகையான கலன்களில் அடைத்து விற்க விருப்பப்படுகிறார். (i) இவ்வாறு விற்பதற்குத் தேவைப்படும் கலன்களின் அதிகபட்ச கொள்ளளவு எவ்வளவு? இவ்வாறாக (ii) எத்தனை கலன் பசும்பால் மற்றும் (iii) எருமைப்பால் விற்கப்பட்டிருக்கும்?
தீர்வு:
தரவு பசும்பால் = 175 லி
எருமைப்பால் = 105 லி
i) கலனில் கொள்ளளவு = a = bq + r
175 = 105(1)+70
105 = 70(1)+35
70 = 35(2 )+ 0
கலனின் கொள்ளளவு = 35
ii) பசும்பால் கலனின் எண்ணிக்கை
175 = 35(7) + 0
எனவே பசும்பால் கலனின் எண்ணிக்கை = 7
iii) எருமைப்பால் கலனின் எண்ணிக்கை
105 = 35(3) + 0
பசும்பால் கலன்களின் எண்ணிக்கை = 3
கேள்வி 3.
a, b, c என்ற எண்களை 13 ஆல் வகுக்கும் போது கிடைக்கும் மீதிகள் முறையே 9, 7 மற்றும் 10. a + 2b + 3c ஐ 13 ஆல் வகுக்கும்போது கிடைக்கும் மீதியைக் காண்க.
தீர்வு:
யூக்ளிடின் வகுத்தல் துணைத் தேற்றத்தின்படி
a = 13m+9
b = 13m+7
c = 13m+10
a+2b+3c = 13m+9+26m+14+39m+30
= 78m+53
78 = 53(1)+25
53 = 25(2)+3
25 = 3(8)+1
எனவே மீதி = 1.
கேள்வி 4.
107 ஆனது 4q + 3, q என்பது ஏதேனும் ஒரு முழு என்ற வடிவில் அமையும் என நிறுவுக.
தீர்வு::
107 என்பதை பின்வருமாறு எழுதலாம்.
107 = 104+3
= 4(26)+3
= 4q+3 இங்கே q = 26
கேள்வி 5.
ஒரு கூட்டுத் தொடர்வரிசையின் (m +1) வது உறுப்பானது (n +1) வது உறுப்பின் இரு மடங்கு எனில், (3m+1) வது உறுப்பானது. (m +n +1)வது உறுப்பின் இரு மடங்கு என நிறுவுக.
தீர்வு:
தரவு tm+1 = 2tn+1
a+(m+1-1)xd = 2[a+(n+1-1)d]
a+md = 2[a+nd]
a+md = 2a+2nd
md = 2a+2nd-a
md = a+2nd
நிரூபி t3m+1 = tm+n+1
t3m+1 = a+(3m+1-1)d
=a+3(a+2nd) (md=a+2nd ஏனெனில்)
= a+3a+6nd
= 4a+6nd
= 2(2a+3nd)
= 2[a+a+2nd+nd]
= 2[a+md+nd] ([a+2nd = md]
ஏனெனில்)
= 2[a+d(m+n)]
= 2[a+(m+n-1+1)d]
= 2tm+n+1
t3m+1 = 2tm+n+1
கேள்வி 6.
-2,-4,-6….100 என்ற கூட்டுத் தொடர்வரிசையில் இறுதி உறுப்பிலிருந்து 12வது உறுப்பைக் காண்க.
தீர்வு:
-100, -98, …………..-2
a = -100,
d = t2 – t1 = -98 – (-100) = -98+100 = 2
t12 = a + (n – 1)d
= -100 + (12 – 1) x 2
= -100 + 11 x 2
= -100 + 22 = -78
கேள்வி 7.
இரண்டு கூட்டுத் தொடர்வரிசைகள் ஒரே பொதுவித்தியாசம் கொண்டுள்ளன. ஒரு தொடர் வரிசையின் முதல் உறுப்பு 2 மற்றும் மற்றொரு தொடர்வரிசையின் முதல் உறுப்பு 7. இரு தொடர்வரிசைகளின் 10வது உறுப்புகளுக்கிடையே உள்ள வித்தியாசம், 21-வது உறுப்புகளுக்கிடையே உள்ள வித்தியாசத்திற்குச் சமம் என நிரூபித்து உள்ளது. இந்த வித்தியாசம் அந்தக் கூட்டுத் தொடர்வரிசைகளின் பொது வித்தியாசத்திற்குச் சமமாக உள்ளது என நிறுவுக.
தீர்வு:
முதல் கூட்டுத்தொடர் வரிசை
a = 2, பொதுவித்தியாசம் = d
t10 = a+9d = 2+9d
இரண்டாவது கூட்டுத்தொடர் வரிசை
a = 7, பொதுவித்தியாசம் = d
t10 = a+9d = 7+9d
இவை இரண்டின் 10வது உறுப்புகளின் வித்தியாசம்
= 7 + 9m – (2 + 9m)
= 7 + 9m – 2 – 9m)
= 5
t21 = a+(n-1)d=7+(21-1)d=7+20d
21 வது உறுப்புகளின் வித்தியாசம்
= 7 + 20d – 2 – 20d
= 5
எனவே நிரூபிக்கப்பட்டது.
கேள்வி 8.
ஒரு நபர் 10 வருடங்களில் 116500 ஐ சேமிக்கிறார். ஒவ்வொரு வருடமும் அவர் சேமிக்கும் தொகையானது அதற்கு முந்தைய வருடம் சேமிக்கும் தொகையை விட ₹100 அதிகம். அவர் முதல் வருடம் எவ்வளவு சேமித்திருப்பார்?
தீர்வு:
கூட்டுத்தொடர் வரிசை = 1, a+100, a+200 ….
S10 = 16500
n2[2a+(n-1)d] = 16500
102[2+(10-1)x4] = 16500
5[2a+9×100] = 16500
2a + 900 = 3300
2a = 3300 – 900
2a = 2400
a = 1200
எனவே அவர் முதல் வருடம் ₹ 1200 சேமித்திருப்பார்.
கேள்வி 9.
ஒரு பெருக்குத் தொடர்வரிசையில் 2-வது உறுப்பு √6 மற்றும் 6-வது உறுப்பு 916 எனில் அந்தத் தொடர்வரிசையைக் காண்க.
தீர்வு:
தரவு t2 = √6 and t6 = 9√6
ar = √6 –(1) ar5 = 9√6 —(2)
(2) ÷ (1)
ar5ar=96√6√
r4 = 9
r4 = (√3)4
r = √3
பெருக்குத்தொடர் வரிசை r = √3 ஐ (1) ல் பிரதியிட
1 ⇒ ar = √6
a√3 = √6
a = 6√3√
a = √2
பெருக்குத்தொடர் வரிசை a, ar, ar2..
√2, √2 √3, √2(√3)2…
√2, √6, 3√2….
கேள்வி 10.
ஒரு வாகனத்தின் மதிப்பு ஒவ்வோர் ஆண்டும் 15% குறைகிறது. வாகனத்தின் தற்போதைய மதிப்பு 145,000 எனில், 3 ஆண்டுகளுக்குப் பிறகு வாகனத்தின் மதிப்பு என்ன?
தீர்வு:
தரவு a = 45000, n = 4, r = 85100 (15%)
tn = arn-1
t4 = 45000(85100)4
= 45000(85100)3
= 27635.6
= ₹27636